Direct Observation of an Equilibrium between $(Bu^tCH_2)_2W(\equiv CBu^t)(SiBu^tPh_2)$ and $(Bu^tCH_2)W(\equiv CHBu^t)_2(SiBu^tPh_2)$ and an Unusual Silyl Migration

Tianniu Chen,[†] Zhongzhi Wu,[†] Liting Li,[†] Karn R. Sorasaenee,[†] Jonathan B. Diminnie,[†] Hongjun Pan,[†] Ilia A. Guzei,[‡] Arnold L. Rheingold,[‡] and Ziling Xue*.[†]

> Department of Chemistry, The University of Tennessee Knoxville, Tennessee 37996 Department of Chemistry & Biochemistry The University of Delaware, Newark, Delaware 19716

> > Received July 20, 1998

The reactivity of α -hydrogen atoms in β -hydrogen free alkyl ligands (e.g., Bu^tCH₂ and Me₃SiCH₂) has been of great interest primarily for the pivotal role of these atoms in the formation of high-oxidation-state alkylidene and alkylidyne complexes.^{1–3} The α -hydrogen atoms in d⁰ (Bu^tCH₂)₃Ta=CDBu^t and (Bu^tCH₂)₃W= CSiMe₃ are also known to undergo exchange among the α -carbon atoms.^{2b,4} In the latter case, deuterium labeling and kinetic studies are consistent with unimolecular and stepwise transfer of two hydrogen atoms in one alkyl ligand to the alkylidyne ligand in (Bu^tCH₂)₃W≡CSiMe₃. A bis(alkylidene) reactive intermediate "(Bu^tCH₂)₂W(=CHSiMe₃)(=CHBu^t)" was proposed in the transfer $[(Bu^{t}CH_{2})_{3}W \equiv CSiMe_{3} \rightleftharpoons "(Bu^{t}CH_{2})_{2}W (= CHSiMe_{3})(= CH-$ Bu^t)" \rightleftharpoons (Bu^tCH₂)₂W(CH₂SiMe₃)(\equiv CBu^t)].⁴ In a d² bis(alkylidene) complex $Os(=CHBu^t)_2(CD_2Bu^t)_2$, hydrogen/deuterium atoms were found to scramble among the α -carbon atoms at 0 °C.⁵ This exchange is believed to occur through an alkylidyne reactive intermediate "(Bu^tCH₂)₃Os≡CBu^t". Although the exchange of α -hydrogen atoms is a fundamental dynamic process in these archetypical alkylidene and alkylidyne complexes, there has been no report of a direct observation of such an exchange

(2) (a) Schrock, R. R. J. Am. Chem. Soc. 1974, 96, 6796. (b) Schrock, R.
 R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359. (c) Li, L.; Hung, M.;
 Xue, Z. J. Am. Chem. Soc. 1995, 117, 12746. (d) Schrock, R. R. Acc. Chem.
 Res. 1979, 12, 98. (e) Schrock, R. R. In Reactions of Coordinated Ligands;
 Braterman, P. S., Ed.; Plenum: New York, 1986. (f) Schrock, R. R. J.
 Organomet. Chem. 1986, 300, 249. (g) Feldman, J.; Schrock, R. R. Prog.
 Inorg. Chem. 1991, 39, 1. (h) Advances in Metal Carbene Chemistry; Schubert, U., Ed.; NATO ASI Series, Series C, Vol. 269, 1989. (i) Aguero, A.; Osborn, J. A. New J. Chem. 1988, 12, 111. (j) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158.

(3) (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley: New York, 1988. (b) Rothwell, I. P. Polyhedron **1985**, 4, 177. (c) Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol. 3, Chapter 25 by J. A. Labinger; Vol. 8, Chapter 54 by R. H. Grubbs. (d) Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York, 1982; Vol. 5, Chapter 2 by D. E. Wigley and S. D. Grav; Chapter 5 by M. J. Winter and S. Woodward.

Gray; Chapter 5 by M. J. Winter and S. Woodward.
(4) (a) Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z. J. Am. Chem. Soc. 1991, 113, 6082. (b) Xue, Z.; Caulton, K. G.; Chisholm, M. H. Chem. Mater. 1991, 3, 384. (c) Xue Z.; Chuang, S.-H.; Caulton, K. G.; Chisholm, M. H. Chem. Mater 1998, 10, 2365.

(5) (a) LaPointe, A. M.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1995, 117, 4802. (b) There is no H/D scrambling among the neopentyl and neopentylidene ligands in Re(=CBu')(=CHBu')(CD₂Bu')₂ at 80 °C in tolueneds. LaPointe, A. M.; Schrock, R. R. Organometallics 1995, 14, 1875. between alkylidene and alkylidyne complexes. Herein, we describe, for the first time, the direct observation of such an exchange (Bu'CH₂)W(=CHBu^t)₂(SiBu'Ph₂) (**2b**) \rightleftharpoons (Bu'CH₂)₂W(=CBu^t)(SiBu'Ph₂) (**2a**) and our studies of the process. **2b** is also one of the rare known d⁰ bis(neopentylidene) complexes; only tantalum and niobium d⁰ bis(neopentylidene) complexes have been reported.^{2e,5a,6} In addition, we were surprised to find that, in the reaction of **2** with O₂, the silyl ligand in **2a** formally underwent an unprecedented migration to the alkylidyne ligand to give a silyl-substituted alkylidene complex (Bu'CH₂)₂W(=O)[=C-(Bu^t)(SiBu'Ph₂)] (**3**).

Complex 2 was synthesized as part of our studies of cyclopentadienyl (Cp)-free silyl complexes of the early transition metals.^{6c,d,7,8} 2 was made by the reaction of Li(THF)₃SiBu^tPh₂⁹ in Et₂O with (Bu^tCH₂)₂(Cl)W=CBu^t (1)^{8a} at -40 °C (Scheme 1).¹⁰ Warming the solution to -10 °C, followed by workup at this temperature and crystallization at -30 °C yielded crystalline 2 in 58% yield.¹⁰ Spectroscopic properties [¹H, ¹³C{¹H}, ¹H-gateddecoupled ¹³C, ¹H-¹³C heteronuclear correlation (HETCOR), and ²⁹Si{¹H} NMR] of **2a** and **2b** are consistent with the structure assignments and the existence of the two isomers in solution.¹⁰ The characteristic ¹³C NMR alkylidene resonance of **2b** at 272.30 ppm and alkylidyne resonance of **2a** at 318.38 ppm appear. respectively, as a doublet and a singlet in the ¹H-gated-decoupled ¹³C spectra. There is one ¹H NMR resonance at 6.03 ppm (=CH-Bu^t) for the two alkylidene ligands in 2b between 253 and 293 K. It is thus unlikely that these two ligands are involved in a fast rotation about the W=C bonds. If so, one would expect to observe three alkylidene α -hydrogen resonances for the *anti*, *anti*- and *syn*, anti-configurations¹⁰ in the ¹H NMR spectrum at low temperature. The presence of a single $=CHBu^{t-1}H$ NMR resonance thus suggests that the two alkylidene ligands adopt an anti,anticonfiguration. Such configuration has been observed in anti,anti-Os(=CHBu^t)₂(CH₂Bu^t)₂.^{5a} The prochiral tungsten atom in **2a** gives rise to diastereotopic methylene (CHaHbBut) protons with chemical shifts of 2.08 and -0.77 ppm (${}^{2}J_{\text{Ha-Hb}} = 11.9$ Hz). In the 2D-NOESY spectra of **2a** and **2b** at 296 K ($t_{mix} = 3$ s),¹⁰ strong positive cross-peaks were observed between the methylene $(CH_aH_bBu^t)$ protons in **2a** and the alkylidene (=CHBu^t) and methylene (CH_2Bu^t) protons in **2b**, consistent with a chemical exchange process between 2a and 2b at this temperature. The mixture of 2a and 2b is stable as solid, but slowly decomposes in solution at room temperature, forming HSiBu^tPh₂ and unknown species.

Variable-temperature NMR spectra of the isomerization $2\mathbf{b} \rightleftharpoons$ **2a** were studied, and the equilibrium constants, $K_{eq} = [2\mathbf{a}]/[2\mathbf{b}]$, measured between 237 and 287 K are listed in Table 1. A plot of ln K_{eq} vs $1/T^{12}$ gave a linear fit and yielded $\Delta H^{\circ} = -0.9(0.2)$

(10) See Supporting Information for details.

[†] The University of Tennessee.

[‡] The University of Delaware.

^{(1) (}a) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.
(b) Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, S. M.; Pedersen, S. F. Organometallics 1982, 1, 1645. (c) Hua, F.; Mowat, W.; Skapski, A. C.; Wilkinson, G. J. Chem. Soc. Chem. Commun. 1971, 1477.
(d) Mowat, W.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 1120. (e) Andersen, R. A.; Chisholm, M. H.; Gibson, J. F.; Reichert, W. W.; Rothwell, I. P.; Wilkinson, G. Inorg. Chem. 1981, 20, 3934. (f) Schrock, R. R. Acc. Chem. Res. 1986, 19, 342. (g) Murdzek, J. S.; Schrock, R. R. In Carbyne Complexes; Fischer, H., Hofmann, P., Kreissl, F. R., Schrock, R. R., Schubert, U., Weiss, K., Eds.; VCH: New York, 1988. (h) Mayr, A.; Hoffmeister, H. Adv. Organomet. Chem. 1991, 32, 227. (i) Kim, H. P.; Angelici, R. J. Adv. Organomet. D. P. 146. Chem. 501. 2007 601. Schrock R. P. P. 146. Chem. 2007 701. Schrock R. P. P. 146

^{(6) (}a) Fellmann, J. D.; Schrock, R. R.; Rupprecht, G. A. J. Am. Chem. Soc. **1981**, 103, 5752. (b) Fellmann, J. D.; Rupprecht, G. A.; Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc. **1978**, 100, 5964. See also: (c) Diminnie, J. B.; Hall, H. D.; Xue, Z. J. Chem. Soc. Chem. Commun. **1996**, 2383. (d) Diminnie, J. B.; Xue, Z. J. Am. Chem. Soc. **1997**, 119, 12657.

^{(7) (}a) Tilley, T. D. In *The Silicon-Heteroatom Bond*; Patai, S., Pappoport, Z., Eds.; Wiley: New York, 1991; Chapters 9 and 10. (b) Sharma, H. K.; Pannell, K. H. *Chem. Rev.* **1995**, *95*, 1351. (c) Xue, Z. *Comments Inorg. Chem.* **1996**, *18*, 223. (d) MacKay, K. M.; Nicholson, B. K. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol. 6, Chapter 43. (e) Aylett, B. J. Adv. *Inorg. Chem.* **1881**, *96*, 79. (g) Schubert, U. *Transition Met. Chem.* **1991**, *16*, 136.

 ^{(8) (}a) Xue, Z.; Li, L.; Hoyt, L. K.; Diminnie, J. B.; Pollitte, J. L. J. Am. Chem. Soc. 1994, 116, 2169. (b) Li, L.; Diminnie, J. B.; Liu, X.; Pollitte, J. L.; Xue, Z. Organometallics 1996, 15, 3520. (c) McAlexander, L. H.; Hung, M.; Li, L.; Diminnie, J. B.; Xue, Z.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1996, 15, 5231. (d) Wu, Z.; Diminnie, J. B.; Xue, Z. Organometallics 1998, 17, 2917.

⁽⁹⁾ Campion, B. K.; Heyn, R. H.; Tilley, T. D. Organometallics 1993, 12, 2584.

Scheme 1

Table 1. Equilibrium Constants (K_{eq}) for $2b \rightleftharpoons 2a^a$

T (K)	$K_{\rm eq} \pm \sigma K_{\rm eq(ran)}$	T (K)	$K_{\rm eq} \pm \sigma K_{\rm eq(ran)}$	T (K)	$K_{\rm eq} \pm \sigma K_{\rm eq(ran)}$
287 ± 1	3.34 ± 0.05	267 ± 1	3.760 ± 0.004	247 ± 1	4.260 ± 0.004
282 ± 1	3.45 ± 0.04	262 ± 1	3.860 ± 0.001	242 ± 1	4.450 ± 0.002
277 ± 1	3.520 ± 0.005	257 ± 1	3.990 ± 0.016	237 ± 1	4.590 ± 0.006
272 ± 1	3.620 ± 0.015	252 ± 1	4.130 ± 0.011		

^{*a*} The largest random uncertainty is $\sigma K_{eq(ran)}/K_{eq} = 0.05/3/34 = 1.5\%$. The total uncertainty $\sigma K_{eq}/K_{eq}$ of 5.2% was calculated from $\sigma K_{eq(ran)}/\sigma K_{eq(ran)}/\sigma K_{eq(ran)}/\sigma K_{eq}/\kappa_{eq}$ $K_{\rm eq} = 1.5\%$ and the estimated systematic uncertainty $\sigma K_{\rm eq(sys)}/K_{\rm eq} =$ 5% by $\sigma K_{eq}/K_{eq} = [(\sigma K_{eq(ran)}/K_{eq})^2 + (\sigma K_{eq(sys)}/K_{eq})^2]^{1/2}$.¹¹

kcal/mol and $\Delta S^{\circ} = -0.6(0.8)$ eu.^{10,13} The equilibrium constants K_{eq} range from 4.590(0.006) at 237 K to 3.34(0.05) at 287 K, indicating that the alkylidyne isomer 2a is favored, and increasing the temperature shifts the equilibrium toward 2b. The process $2b \rightarrow 2a$ is slightly exothermic with $\Delta H^{\circ} = -0.9(0.2)$ kcal/mol. This enthalpy change outweighs the entropy change [$\Delta S^{\circ} = -0.6$ -(0.8) eu] in the isomerization $2\mathbf{b} \rightarrow 2\mathbf{a}$ to give $\Delta G^{\circ} = -0.7(0.4)$ kcal/mol at 287(1) K in favor of 2a. It is interesting to note that the d^0 alkylidyne complex 2a is thermodynamically close in energy to its bis(alkylidene) isomer 2b, although 2a is slightly more stable. In the α-hydrogen exchange in (Bu^tCH₂)₃W≡CSiMe₃ \rightleftharpoons (Bu^tCH₂)₂W(CH₂SiMe₃)(\equiv CBu^t), the proposed bis(alkylidene) intermediate "(Bu^tCH₂)₂W(=CHSiMe₃)(=CHBu^t)" is so much higher in energy than the ground-state alkylidyne structures that this intermediate is not observed.⁴ It is not clear why the energy difference between 2a and 2b is small, and why 2b can be directly observed in the current studies.

In the solid-state CPMAS (cross-polarization magic angle spinning) ${}^{13}C{}^{1}H$ NMR of crystalline 2, both 2a and 2b were observed, indicating that both isomers are present in the crystalline solids. Crystals of 2 were found to be severely disordered, and attempts to refine the structure of 2a(2b) were unsuccessful.

When a yellow-orange solution of 2 in benzene- d_6 was exposed to 1 equiv of gaseous O₂ at room temperature, a rapid reaction occurred and the color of the solution turned red. We were surprised to find the formation of an oxo-alkylidene complex $(Bu^{t}CH_{2})_{2}W(=O)[=C(Bu^{t})(SiBu^{t}Ph_{2})]$ (3) in this reaction in 32% vield by NMR (Scheme 2).¹⁰ Formally the silvl ligand in (But- $CH_2_2W(\equiv CBu^t)(SiBu^tPh_2)$ (2a) migrates to the alkylidyne ligand in this reaction to give an alkylidene ligand $[=C(Bu^{t})(SiBu^{t}Ph_{2})]$ in 3. To our knowledge, this is the first observation of such a migration of a silyl ligand. It is likely that this is an oxygeninduced silyl migration, although we cannot at present rule out other possible pathways. Ahn and Mayr have reported a formal insertion of an alkylidyne group into a W-N bond and the elimination of HBr in the reaction of TpW(=CHPh)(=X)Br [Tp = tris(pyrazolyl)borate; X = NR, O] with Br₂.¹⁴

Figure 1. ORTEP of 3 showing 30% thermal ellipsoids. Selected bond distances (Å) and angles (deg): W-O 1.686(5), W-C(1) 2.112(9), W-C(6) 2.118(9), W-C(11) 1.920(7), O-W-C(1) 111.8(3), O-W-C(6) 109.5(3), O-W-C(11) 104.1(3).

Scheme 2

$$2 \xrightarrow{O_2} Bu^{t}CH_2 \xrightarrow{W} C_1^{t}$$

Spectroscopic properties of **3** are consistent with the structure assignment.¹⁰ The ¹³C NMR alkylidene resonance of **3** at 269.65 ppm appears as a singlet in the ¹H-gated-decoupled ¹³C spectrum. The molecular structure of **3** has been determined by X-ray crystallography, and is shown in Figure 1.15 Complex 3 exhibits distorted tetrahedral geometry around the tungsten center. The W=C bond distance of 1.920(7) Å is similar to those observed for other d^0 alkylidene complexes of tungsten.^{3a,16} The W=O bond distance of 1.686(5) Å is also similar to those observed for tungsten-oxo complexes.^{3a} Complex **3**, which is thermally stable at room temperature, reacts further with excess O_2 to give unknown species. Studies are currently underway to probe the mechanism of the reaction of 2 with O_2 .

Acknowledgment. We are grateful to the National Science Foundation Young Investigator Award (CHE-9457368), DuPont Young Professor Award, Camille Dreyfus Teacher-Scholar Award, and the University of Tennessee (Faculty Research Award) for support of this research. We also thank Dr. Jeffrey C. Bryan for his assistance.

Supporting Information Available: Experimental details, the computation of errors in ΔH° and ΔS° , a chart of *anti*, *anti*- and *syn*, *anti*-2b, a plot of $\ln K_{eq}$ vs 1/T, a partial phase-sensitive 2D-NOESY spectrum of 2 and a complete list of the crystallographic data for 3 (13 pages, print/ PDF). See any current masthead page for ordering information and Web access instructions.

JA982571L

⁽¹¹⁾ Taylor, J. R. An Introduction to Error Analysis: The Study of Incertainties in Physical Measurements; University Science Books: Mill Valley, CA 1982; Chapter 4.

⁽¹²⁾ Levine, I. N. *Physical Chemistry*, 3rd ed.; McGraw-Hill: New York, 1988; pp 307-309.

⁽¹³⁾ The uncertainties in ΔH° and ΔS° were computed from the error propagation formulas derived from the equation $-RT \ln K_{eq} = \Delta H^{\circ} - T\Delta S^{\circ}.^{10}$ (14) Ahn, S.; Mayr, A. J. Am. Chem. Soc. **1996**, 118, 7408.

⁽¹⁵⁾ Crystal data for **3** at 223 K:¹⁰ orthorhombic, $Pna2_1$, a = 21.8650(5)Å, b = 17.2786(2) Å, c = 8.31220(10) Å, V = 3140.32(9) Å³, Z = 4, $R(R_w)$ = 2.91(5.29)% for 3931 unique reflections with $F > 4\sigma(F)$, GOF = 1.035 (16) See, e.g.: (a) Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 2454.
 (b) VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Organometallics 1994, 13, 3378.
 (c) Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. S. Schrock, R. R.; DePue, R. T.; Feldman, S. Schrock, S. Schrok, S. Schrock, S. Schrock, S. Schrock, S. Schrock, S. Schroc J.; Yap, K. B.; Yang, D. C.; Davis, W. M.; Park, L.; DiMare, M.; Schofield, M.; Anhaus, J.; Walborsky, E.; Evitt, E. Krüger, C.; Betz, P. Organometallics 1990, 9, 2262.